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S O L U T I O N  O F  T H E  P R O B L E M  

O F  A B E A M  W I T H  A C U T  

V.  A. K o v t u n e n k o  UDC 539.3+519.6 

In this paper, we consider the Kirckhoff model for a thin elastic beam which is fixed at the edges and is 
in equilibrium under the action of external load. The beam has a transverse cut at whose edges the condition 
of mutual  nonpenetration is imposed. The present model is described by the energy-functionai minimization 
problem or by an equivalent variational inequality. The solution of the problem of a beam without a cut is used 
to derive an analytical solution of the equilibrium problem for a beam with a cut. The main characteristics 
of the state of the beam are determined using the solution obtained. Examples of solution are presented for 
particular functions of external forces. 

Next, we consider the problem of optimal control of a cut with two criteria: minimum opening of the 
cut and minimum departure of stresses from given values. In both cases, we study the behavior of optimal 
cuts and present examples of solutions. 

Formulations of problems of elastic bodies with cracks (cuts) can be found, for example, in [1, 2]. 
Nonpenetration boundary conditions at the crack edges were stated by Khludnev [3, 4]. Glovinsky et ai. [5, 6] 
have solved minimization problems with a constraint and variational inequalities. Some examples of exact 
solutions of variational inequalities are given in [7, 8]. The problems of optimal control for plates with cracks 
are considered in [3, 4]. A numerical method  of solving contact problems for plates is proposed in [9, 10]. 

T h e  P r o b l e m  of  t h e  E q u i l i b r i u m  of a B e a m .  Let the median of a beam coincide with segment 
= (a, b). We look for the function of displacements of the beam's points w(z) under the action of a given 

external force f ( x )  (Fig. 1). If f �9 L2(fl), then w �9 H2(~) f3 H01 (fl) is a unique solution of the boundary-value 
problem 

- D 2 w  = f ,  w(a) = w(b) = 0. (1) 

Let the beam have a transverse cut at the point y, a < y < b. We seek the displacement function u(x) 
for the beam (Fig. 1). The condition of nonpenetration for the cut edges is written as in [3, 4]: 

= + 0 )  - - 0 ) / >  0 .  

Denote fly = fl \{y}.  We define the principal Hilbert space as 

and the closed convex set as 

Xy = {u �9 Hl(12y), = . ( b )  = 0 )  

= {u �9 [u]. 0}. 

We introduce the scalar product  (u, v)v = (Du, Dv)u in Xy and the equivalent norm IlullZu = (u, ~)y, where D 
is a differentiation operator; (.,-)y denotes integration over flu. The potential energy of the beam is defined 
by IIv(v) = 0.5[[vH2u - (f,  v)y. Then,  the problem of the equilibrium of the beam consists in minimization of 
the functional Hu [3, 4]: 

inf Fly(v) = IIy(u). 
vEKv 

(2) 
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Another equivalent formulation of problem (2) has the form of the variational inequality 

u �9 Ky, (u, v - u)y/> (f, v - u)y Vv �9 Ky. 

We introduce the notat ion 

a+ { a, a > O ,  _ ( O, a>~O, 
= O, a<.O, a = - a ,  a < O ,  

from which we have a = a + - a - ,  a+,a - >1 O, a+a - = O. 

where 

T h e o r e m  1. A unique solution of problem (2) is the function 

u(x)  = w(z )  - Dw+(y)a~(z) ,  

w is a solution of  problem (1). 

�9 ( a , v  - 0) ,  
x �9 (y + 0, b); 

(3) 

(4) 

P r o o f .  By virtue of the equivalence of (2) and (3) we shall prove (3). Note the following properties of- 
the function ay e Cr162 gl Xy (Fig. 2): 

[ a ~ l y = - ( b - a ) ,  D a y ( x ) = _ l  ( z # y ) ,  D2ay(z ) -=O ( z # y ) .  

Then, integrating by parts, we obtain (ay, h)y = ( -Dairy ,  h)y - [Da~h]y = -[h]y. Further,  on the strength of 
(1), (f, h)y = ( - D 2 w ,  h)y = (w, h)~ + Dw(y)[h]y, (u, h)y = (w, h)y - Dw+(y)(ay ,  h)y = (w, h)y + Dw+(y)[h]y. 
is valid. We calculate [u]y = [w]y - Dw+(y)[ay]y = ( b -  a)Dw+(y) .  Thus, we have (u, v - u)~ - ( f ,  v - u)y = 
( D w + ( y )  - D w ( y ) ) [ v  - u]y = D w - ( y ) [ v  - u]y = D w - ( y ) [ v ] y  - (b - a ) D w - ( y ) D w + ( y )  = Dw-(y)[v]y >1 0 
Vv E Ky. Since [u]y/> 0, u given by formula (4) belongs to Ky and is a solution of (3). Let us demonstrate 
its uniqueness. Let ul and u2 be two solutions of variational inequality (3), i.e., we have (ul, Vl - ul)y >t 
( f ,  vl - ul)y Vv l  E Ky and ( U 2 , ~ ' 2  - -  U2)y >t ( f ,  v2 -- U2)y Vv2 E K~. We take vl = u2 and v2 = Ul and 
combine the two inequalities. We then obtain Ilul - u2112 ~ 0, from which follows the uniqueness of the 
solution. The theorem is proved. 

R e m a r k  1. It follows from (1) that  the function w and, hence, the solution u belong to the class 
H2(fi~). Then, by virtue of the properties of w and a~, solution (4) of problem (3) is a solution of the 
boundary-value problem 

- D 2 u  = f in fry, [uly = ( b - a ) D w + ( y ) ,  [Du]y = O, Du(y)  = - D w - ( y ) .  

R e m a r k  2 (smoothness of the solution). It follows from (1) and (4), that  if f �9 Hn(fiy) (n 1> 0), we 
have u �9 Hn+2(~y). If f �9 C"(~y)  (n/> 0), we have u �9 C~+2(~y). 

R e m a r k  3 (inverse problem). Let an arbitrary function u belong to the class H2(fiy)f3 Xy and let the 
following be valid for the function: [Duly = O, Du(y)[u]y = 0, [u]y >/0, Du(y)  <~ O. Then u is a solution of 
problem (3) for f = - D 2 u .  

Let us prove the latter result. We have u �9 Ky. Integrating by parts, we obtain 

(u, v - u)y - <f, v - u)y = ( - D 2 u  - f ,  v - u)y - [Du(v - u)]y = -Du(y ) [v]u+ Ou(y)[u]y = -Du(y)[v]~ >1 0 

for any v E Kv, which proves the theorem. 
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Having found the displacement function u(x )  = w ( x )  - D w + ( y ) a y ( x ) ,  we can calculate all physical 
characteristics of the solution: 
the strain e(z)  or stress or(x) 

e(x)  = a ( z )  = D u ( x )  = O w ( z )  - D w + ( y )  

[it should be noted that  the stress or(x) is a function that is continuous on (a, b), i.e., it belongs to the class 

Hl( f l~ )  n C(a ,  b)l , 
the contact force 

p = - a ( y )  = D w - ( y )  >f O, 

and the potential  energy of the beam 

II(u) = O.hllull~ - (f ,  u)y = -0.511~11~ - [ D u u l y  = -0 .51lOw - D w  + (y)H20 �9 

Here I1" II0 denotes  the norm in L2(a, b). 
E x a m p l e s  of  E x a c t  S o l u t i o n s .  E x a m p l e  1. Let f ( x )  = c (c >/0),  then w ( z )  = - 0 . h c ( x - a ) ( z - b ) ,  

D w ( y )  = c(0.5(a + b) - y). If a < y ~< 0.5(a + b), we have 

c l  ( x - - a ) ( x - 4 - a - e y ) ,  x e  ( a , y - - 0 ) ,  
~(x)  = - ~ .  (x - b)(~ + b - 2y),  �9 �9 (y + 0, b), 

[u ]y=  0.hc(b - a)(a + b - 2y) >~ 0, a(u)  = c(y - x) ,  p = 0 (Fig. 3). 

If 0.5(a + b) ~< y < b, then u(x )  = -0 .hc (x  - a) (x  - b), [u]~ = 0, or(u) = 0.hc(a + b -  2x), p = 0.5c(2y - (a + b)) 
(Fig. 4). The curves of [u]y versus p on y are shown in Fig. 5. 

E x a m p l e  2. Let f ( x )  = sin k (x  - a) [k = ~r/(b - a)], then 

w ( x )  = k -2 sin k (x  - a), D w ( x )  = k -1 cos k(x  - a). 

Hence, we have 

k -2 / sin k (x  - a), y >t 0.5(a + b), ~t(X) [ sin k ( z  - a) - k cos k(y  - a )a~(z ) ,  y <~ 0.5(a + b) (Fig. 6), 
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is shown in Fig. 8. 

. (~)=k_~ { cosk(~- . ) ,  y ~ 0.5(a+ b), 
c o s k ( z - a ) - c o s k ( y - a ) ,  y < O . 5 ( a + b )  

p=k_l  ~ -cosk(v-~) ,  v~o.5c~+b), 
0, y ~ 0.5(a+ b). t 

(Fig. 7), 

[~]y = k - l ( b  - a ) ~  O, y ~ 0 . 5 ( a + b ) ,  
c o s k ( y - a ) ,  y<~O.5(a+b) ( 

O p t i m a l  C o n t r o l  of  C u t .  1) Let us consider the problem of minimization of the crack opening [2]: 

inf [uly, (5) 
a<y<b 

where u is a solution of problem (2). By virtue of (4), problem (5) is equivalent to 

Let us define the following sets: 

I+(w) = {y ~ a, 

inf Dw+Cy). (6) 
a<y<b 

Dw(y) > 0}, I - (w)  = {y �9 fl, Dw(y) <~ O}. 

We then have I+(w) U I - ( w )  = fL Since the function w E Cl(f~) (on the strength of embedding theorems), 
Dw is a continuous function. Since w(a) = w(b) = 0, we have l - ( w )  # r Thus, by virtue of Dw+(y) >1 0, 
we obtain inf [u]y = 0 for any y E I - (w) .  

a<y<b 
E x a m p l e  1. For f ( x )  =_ c (c >1 O) and for any 0.5(a+b) <~ y < b, the function u(x) = - 0 . b c ( x - a ) ( x - b )  

is a solution of problem (5) (see Fig. 5). 
E x a m p l e  2. For f ( x )  = sin k(x - a) [k = 7r/(b - a)] and for any 0.5(a + b) ~< y < b, 

u(x) = k -2 sin k(x - a) 
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is a solution of problem (5) (Fig. 8). 
2) We consider the problem of optimization of stresses 

inf {J(y)  = Ha - o'o112o}, (7) a<y<b 
where a0 �9 L2(~) is the  given stress function, and a = Du [u is a solution of problem (2)]. In view of the 
properties of the function w, we obtain 

b 

J(Y) = [lOw - Dw+(Y) - a0ll~ = HOw - aoll~ + 2/aodxDw+(y) + (b -  a)(Dw+(y)) 2. 
a 

b b 
] aodx >1 O, then inf J(y) = HDw-aol] 2 is obtained at any y �9 I-(w) [then Dw+(y) = 0]. If ] If O'0 d2~ < 0 

a < y < b  
tl a 

b 
and I+(w) ~ ~, then the  inf imum is obtained at y, such that  Dw+(y,)+(b-a) -1 [ aodx ---* inf. In particular, 

b 
if there is y, �9 I+(w) such tha t  Dw+(y,) = -(b - a) -1 [ aodx, we have 

tl 

b 
J ( y , ) = H D w - o ' o H 2 - ( b - a ) - l ( / a o d x )  2 (Fig. 9). 

a 

We take as an example the case where (~0(x) --- const and a0 < 0 and, hence, 

b 
(b - a) -1 / aodx = ao < 0. 

a 

E x a m p l e  1. Let f(x) - c (c >/0).  Then 

Dw+(y ) = ( 0.hc(a +0,b - 2y), 0.5(ha < y +<~b)0"5(a<~ Y +<b),b. 

If - a 0  < 0.hc(b - a), then at the point y, = 0.5(a + b) + ao/c we have Dw+(y,) = -o'o (Fig. 10) and the 
minimum of (7) is reached as 

J(y,) = 110.5 c(a + b - 2x)]l 2 - c2(b - a)3 
12 

If -or0/> 0.5c(b - a), then y, = a, and the  infimum 

c2(b _ ~ 2~o ~2~ 
J(~) = 11o.5 ~(~ + b -  2 ~ ) -  O . ~ ( b -  a ) -  ~o11~o - (1 + 3(1 + 

12 \ ,, c(b- a)] ] 
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is not reached. If ao i> 0, then for any y, E l - (w)  the minimum of (7) is 

g(y , )= l lO .5c (a+b_2z )_ao l l2o=c2(b -a )3[  ~ ^7 2ao ~2,~ 
12 1 + 3~,c( ~ -  a)'} )" 

Example  2. Let f (x)  = sin k(x - a) [k = 7r/(b - a)]. Then 

Dw+(y ) = k_ 1 { cos k(Yo, - a), 0.5(aa < y +<b)0"5(a~< Y +<b),b. 

Let ao < 0. If - ao  < k -1, we have Dw+(y,) = -(to at the point y, = a + k -1 arccos(-kao) and the minimum 

j(y,) = i iDw(z ) l l 2  ~ = b - a  2k 2 

is reached. If -a0  >i k -1, the infimum of J(y) is not reached and has the form 

y ( a )  = Ilk -a  cos  k(~  - a) - k - '  - ~011~ --  (b - a)  ~-V + ( k - a  + ~~ " 

If a0 >/0, then for any y. /> 0.5(a + b) the minimum of J(y) is 

(1 ) 
J(y,) = Ilk -1  c o s k ( ~  - a) - ~011~ = ( b -  a) ~ V  + ~~ " 
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